Topology

Problem Sheet 4 Deadline: 14 May 2024, 15h

Exercise 1 (2 Punkte).

Let Y be a subset of a topological space X equipped with the subspace topology. For any subset A of Y show that $\stackrel{\circ}{A} \cap Y$ is contained in the interior of A as a subset of Y, where $\stackrel{\circ}{A}$ is the interior of A in X.

Are the interior of A as a subset of Y and $\overset{\circ}{A} \cap Y$ always equal?

Exercise 2 (4 Points).

- a) Given a homeomorphism $f: X \to Y$ between two topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) as well as a subset $A \subset X$, show that the restriction map $f_{\uparrow A}: A \to f(A)$ is again a homeomorphism, where A (resp. f(A)) is equipped with the subspace topology from X (resp. from Y).
- b) Deduce from the above that there is no homeomorphism $f : [0, 1] \to (0, 1)$, both equipped with the subspace topology from the euclidean line.
- c) Are \mathbb{R} and \mathbb{R}^2 (both with the euclidean topology) homeomorphic?

Exercise 3 (8 Points).

Fix some prime number p.

a) Given $m \leq n$ in \mathbb{N} , show that the map

$$\phi_{m,n}: \quad \mathbb{Z}/p^n\mathbb{Z} \quad \to \quad \mathbb{Z}/p^m\mathbb{Z}$$
$$x \mod p^n \quad \mapsto \quad x \mod p^m$$

is well-defined.

For every n in \mathbb{N} we consider the set $\mathbb{Z}/p^n\mathbb{Z}$ as a topological space with the discrete topology. Set now $X = \prod_{n=1}^{\infty} \mathbb{Z}/p^n\mathbb{Z}$ with the product topology.

- b) Show that the set $\mathbb{Z}_p = \{(x_n)_{n \in \mathbb{N}} \in X \mid \phi_{m,n}(x_n) = x_m \text{ for all } m \leq n \text{ in } \mathbb{N}\}$ is closed in X.
- c) Giving some n_0 in \mathbb{N} , show that the set

$$\{(x_n)_{n\in\mathbb{N}}\in\mathbb{Z}_p\mid x_n=0 \text{ for all } n\leq n_0\}$$

is a clopen subset of \mathbb{Z}_p with the subspace topology of X.

d) Show that \mathbb{Z}_p is totally disconnected.

(Please turn over the page!)

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im entsprechenden Fach im Keller des mathematischen Instituts.

Exercise 4 (6 Points). Consider the subset $A_0 = [0,1] \times \{0\}$ of \mathbb{R}^2 and set

$$A_n = \{(x, y) \in \mathbb{R}^2 \mid x - ny = 0, x \in [0, 1]\} \text{ for } n \ge 1 \text{ in } \mathbb{N}.$$

Equip the union X of all A_n 's with the subspace topology from \mathbb{R}^2 with the euclidean topology.

- a) Is X connected? Is X path-connected?
- b) Determine for which n in \mathbb{N} the subset $A_n \setminus \{(0,0)\}$ is open in X.
- c) Is X locally connected?